24 research outputs found

    Additive manufacturing (3D print) of air-coupled diaphragm ultrasonic transdrucers

    Get PDF
    Air-coupled ultrasound is a non-contact technology that has become increasingly common in Non Destructive Evaluation (NDE) and material evaluation. Normally, the bandwidth of a conventional transducer can be enhanced, but with a cost to its sensitivity. However, low sensitivity is very disadvantageous in air-coupled devices. This thesis proposes a methodology for improving the bandwidth of an air-coupled micro-machined ultrasonic transducer (MUT) without sensitivity loss by connecting a number of resonating pipes of various length to a cavity in the backplate. This design is inspired by the pipe organ musical instrument, where the resonant frequency (pitch) of each pipe is mainly determined by its length. The −6 dB bandwidth of the "pipe organ" inspired air-coupled transducer is 55.7% and 58.5% in transmitting and receiving modes, respectively, which is ∼5 times wider than a custom-built standard device. After validating the concept via a series of single element low-frequency prototypes, two improved designs: the multiple element and the high-frequency single element pipe organ transducers were simulated in order to tailor the pipe organ design to NDE applications.Although the simulated and experimental performance of the pipe organ inspired transducers are proved to be significantly better than the conventional designs, conventional micro-machined technologies are not able to satisfy their required 3D manufacturing resolution. In recent years, there has been increasing interest in using additive manufacturing (3D printing) technology to fabricate sensors and actuators due to rapid prototyping, low-cost manufacturing processes, customized features and the ability to create complex 3D geometries at micrometre scale. This work combines the ultrasonic diaphragm transducer design with a novel stereolithographic additive manufacturing technique. This includes developing a multi-material fabrication process using a commercial digital light processing printer and optimizing the formula of custom-built functional (conductive and piezoelectric) materials. A set of capacitive acoustic and ultrasonic transducers was fabricated using the additive manufacturing technology. The additive manufactured capacitive transducers have a receiving sensitivity of up to 0.4 mV/Pa at their resonant frequency.Air-coupled ultrasound is a non-contact technology that has become increasingly common in Non Destructive Evaluation (NDE) and material evaluation. Normally, the bandwidth of a conventional transducer can be enhanced, but with a cost to its sensitivity. However, low sensitivity is very disadvantageous in air-coupled devices. This thesis proposes a methodology for improving the bandwidth of an air-coupled micro-machined ultrasonic transducer (MUT) without sensitivity loss by connecting a number of resonating pipes of various length to a cavity in the backplate. This design is inspired by the pipe organ musical instrument, where the resonant frequency (pitch) of each pipe is mainly determined by its length. The −6 dB bandwidth of the "pipe organ" inspired air-coupled transducer is 55.7% and 58.5% in transmitting and receiving modes, respectively, which is ∼5 times wider than a custom-built standard device. After validating the concept via a series of single element low-frequency prototypes, two improved designs: the multiple element and the high-frequency single element pipe organ transducers were simulated in order to tailor the pipe organ design to NDE applications.Although the simulated and experimental performance of the pipe organ inspired transducers are proved to be significantly better than the conventional designs, conventional micro-machined technologies are not able to satisfy their required 3D manufacturing resolution. In recent years, there has been increasing interest in using additive manufacturing (3D printing) technology to fabricate sensors and actuators due to rapid prototyping, low-cost manufacturing processes, customized features and the ability to create complex 3D geometries at micrometre scale. This work combines the ultrasonic diaphragm transducer design with a novel stereolithographic additive manufacturing technique. This includes developing a multi-material fabrication process using a commercial digital light processing printer and optimizing the formula of custom-built functional (conductive and piezoelectric) materials. A set of capacitive acoustic and ultrasonic transducers was fabricated using the additive manufacturing technology. The additive manufactured capacitive transducers have a receiving sensitivity of up to 0.4 mV/Pa at their resonant frequency

    On the natural frequency and vibration mode of composite beam with non-uniform cross-section

    Get PDF
    In this paper, the vibratory properties and expression of natural modes of laminated composite beam with variable cross-section ratios of elastic modulus and density along the axis of the beam have been investigated via theoretical analysis. Based on the generalized Hamilton principle, the longitudinal and transverse vibration equations have been deduced by the means of variational method. Then, the natural frequencies of longitudinal and transverse vibration modes have been obtained using the method of power series, which agree well with finite element simulations. The first-order natural frequencies of longitudinal and transverse of composite beams are plotted as a function of the elastic modulus or densities difference of two components. With distinct material characteristics, the effect of shape factor on the first and second order lateral modes of composite beam is also revealed. In addition, the study shows that the boundary conditions impose a strong effect on the shape factor. The method presented in this paper is not only suitable for the laminated composite beam with variable cross-section, but will also be applicable to more general cases of composite beams of complex geometry and component in vibration mechanics. This controllable vibration performance achieved in this paper may shed some light on and stimulate new architectural design of composite engineering structures

    On heat transfer of weakly compressible power-law flows

    No full text
    This paper completes a numerical research on steady momentum and heat transfer in power-law fluids in a channel. Weakly compressible laminar fluids are studied with no slip at the walls and uniform wall temperatures. The full governing equations are solved by continuous finite element method. Three thermal conductivity models are adopted in this paper, that is, constant thermal conductivity model, thermal conductivity varying as a function of temperature gradient, and a modified temperature-gradient-dependent thermal conductivity model. The results are compared with each other and the physical characteristics for values of parameters are also discussed in details. It is shown that the velocity curve from the solution becomes straight at higher power-law index. The effects of Reynolds numbers on the dilatant fluid and the pseudo-plastic look similar to each other and their trends can be easily predicted. Furthermore, for different models, the temperature curves also present pseudo-plastic and dilatant properties

    On the drag effect of one fluid driven by another in a vertical channel

    No full text
    The idea of dragging a viscous fluid by another kind of fluid via the shear stress has fascinated the scientists and engineers. The dependence of the drag effect on the physical parameters of the two immiscible fluids is very much desired but still challenging. In this research, three different kinds of fluids are employed to drag a pure fluid between vertical parallel channel walls, that is, the viscous fluid, the non-Newtonian power-law fluid, and the nanofluid. The drag effects of two-layer fluids are investigated by comparing the velocity fields and the mean velocity curve. Essential parameters determining the dragging efficiencies of the driven fluid are studied systematically: the drag effects of the density ratio p, the thermal conductivity ratio k, the thermal expansion coefficient ratio b, and the viscosity ratio m of the two-layer fluids are focused. Both dilatant flows and pseudo-plastic fluids are considered in driving the viscous fluid. When the pure fluid is driven by the nanofluid, the single-phase model is adopted. The example of 47 nm-Al2O3 nanoparticles suspended in water is analyzed for demonstration: the thermal expansion, the effective viscosity, and the effective thermal conductivity are dependent of the concentration of nanofluid, which makes the nanoparticle volume fraction ϕ a major concern in the drag effects. The findings in the paper reveal several potential strategies to promise high effectiveness on fluid driving via interface shear, which we hope will inspire engineers and researchers in relative working fields

    Corrosion Fatigue Degradation Characteristics of Galvanized and Galfan High-Strength Steel Wire

    No full text
    Cables are the main load-bearing components of a cable bridge and typically composed of high strength steel wires with a galvanized coating or Galfan coating. Galfan steel wire has recently started to be widely used because of its better corrosion resistance than galvanized steel wire. The corrosion characteristics of the coating and the difference in the corrosion fatigue process of the two types of steel wire are unclear. To further improve the service performance and maintenance of cable bridges, this study investigated the corrosion characteristics of galvanized steel wire and Galfan steel wire through accelerated corrosion tests and established a time-varying model of uniform corrosion and pitting corrosion of high-strength steel wire. Then, a long-span suspension bridge was taken as the research object, and the corrosion fatigue degradation of the two kinds of steel wire under a traffic load was analyzed on the basis of traffic monitoring data. The results showed that the uniform corrosion of the two types of steel wire conformed to an exponential development trend, the corrosion coefficient of galvanized steel wire conformed to the normal distribution, and the corrosion coefficient of Galfan steel wire conformed to the Cauchy distribution. The maximum pitting coefficient distribution of the two kinds of steel wire conformed to the generalized extreme value distribution. The location parameters and scale parameters of the two distributions showed an exponential downward trend with the increase of corrosion duration. When the traffic intensity was low, the corrosion characteristics of the steel wire was the main factor affecting its service life, and the average service life of Galfan steel wire was significantly higher than that of galvanized steel wire. Under a dense traffic flow, the service life of the steel wire was mainly controlled by the traffic load, and the service life of Galfan steel wire was slightly improved. Effective anti-corrosion measures are a key factor for improving the service life of steel wire

    Multi-Lane Traffic Load Clustering Model for Long-Span Bridge Based on Parameter Correlation

    No full text
    Traffic loads are the primary external loads on bridges during their service life. However, an accurate analysis of the long-term effect of the operating traffic load is difficult because of the diversity of traffic flow in terms of vehicle type and intensity. This study established a traffic load simulation method for long-span bridges based on high authenticity traffic monitoring data, and an improved k-means clustering algorithm and Correlated variables Sampling based on Sobol sequence and Copula function (CSSC) sampling method. The monitoring traffic data collected through a weigh-in-motion (WIM) system was processed to generate a multi-lane stochastic traffic flow. The dynamic response of a prototype suspension bridge under a traffic load was analyzed. The results show that the traffic load can be divided into clusters with identical distribution characteristics using a clustering algorithm. Combined with CSSC sampling, the generated traffic flow can effectively represent daily traffic and vehicle characteristics, which improves the accuracy of the assessment of the loads long-term effect. The dynamic response of the bridge to different traffic flows varied significantly. The maximum and minimum vertical displacement of the main girder was 0.404 m and 0.27 m, respectively. The maximum and minimum bending stresses of the short suspender were 50.676 MPa and 28.206 MPa, respectively. The maximum equivalent bending stress and axial stress were 16.068 MPa and 10.542 MPa, respectively, whereas the minimum values were 9.429 MPa and 8.679 MPa, respectively. These differences directly influence the short and long-term evaluation of bridge components. For an accurate evaluation of the bridge operation performance, the traffic flow density must be considered

    Pipe organ air-coupled broad bandwidth transducer

    Get PDF
    Air-coupled transducers are used to conduct fast non-contact inspections in NDT. Normally, the bandwidth of a conventional transducer can be enhanced, but with a cost to its sensitivity. However, low sensitivity is very disadvantageous in air-coupled devices. This paper presents a methodology for improving the bandwidth of an air-coupled micro-machined ultrasonic transducer (MUT) without sensitivity loss by connecting a number of resonating pipes of various length to a cavity in the backplate. The design is inspired by the pipe organ musical instrument, where the resonant frequency (pitch) of each pipe is mainly determined by its length

    "Pipe organ" inspired air-coupled ultrasonic transducers with broader bandwidth

    Get PDF
    Piezoelectric micromachined ultrasonic transducers (PMUTs) are used to receive and transmit ultrasonic signals in industrial and biomedical applications. This type of transducer can be miniaturized and integrated with electronic systems since each element is small and the power requirements are low. The bandwidth of the PMUT may be narrow in some conventional designs, however it is possible to apply modified structures to enhance this. This paper presents a methodology for improving the bandwidth of air-coupled PMUTs without sensitivity loss by connecting a number of resonating pipes of various length to a cavity. A prototype piezoelectric diaphragm ultrasonic transducer is presented to prove the theory. This novel device was fabricated by additive manufacturing (3D printing), and consists of a PVDF thin film over a stereolithography designed backplate. The backplate design is inspired by a pipe organ musical instrument, where the resonant frequency (pitch) of each pipe is mainly determined by its length. The -6dB bandwidth of the “pipe organ” air-coupled transducer is 55.7% and 58.5% in transmitting and receiving modes, respectively, which is ~5 times wider than a custom-built standard device

    Piezoelectric microphone via a digital light processing 3D printing process

    Get PDF
    In nature sensors possess complex interlocking 3D structures and extremely localized material properties that allow processing of incredibly complex information in a small space. Acoustic sensor design is limited by fabrication processes, often MEMS based, where there is limited scope for fully 3D creations due to planer fabrication methods. Here we investigate the application of 3D printing via digital light processing (DLP) to integrate piezoelectric, conductive and structural polymer layers to create a complete electro-mechanical device. We demonstrate a working piezoelectric acoustic sensor, capable of sending electric signals that can be picked up by pre-amp circuitry fabricated using a commercially available 3D printer. We show that the 3D printing of mechanically sensitive membranes with thicknesses down to 35 μm and tunable resonant frequencies is possible and further show it is possible to create a fully working electro-acoustic device by embedding 3D printed piezoelectric and conductive parts. Realizing this design opens up the possibility of generating truly 3D structured functional prints that may be used in bio-inspired design
    corecore